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A B S T R A C T

To better quantify the relatively long period (< 0.3 Hz) shaking experienced during the 2015 Gorkha (Nepal)
earthquake sequence, we study the finite rupture processes and the associated 3D ground motion of the Mw7.8
mainshock and the Mw7.2 aftershock. The 3D synthetics are then used in the broadband ground shaking in
Kathmandu with a hybrid approach, summarized in a companion paper (Chen and Wei, 2017, submitted to-
gether). We determined the coseismic rupture process of the mainshock by joint inversion of InSAR/SAR, GPS
(static and high-rate), strong motion and teleseismic waveforms. Our inversion for the mainshock indicates
unilateral rupture towards the ESE, with an average rupture speed of 3.0 km/s and a total duration of ~60 s.
Additionally, we find that the beginning part of the rupture (5–18 s) has about 40% longer rise time than the rest
of the rupture, as well as slower rupture velocity. Our model shows two strong asperities occurring ~24 s and
~36 s after the origin and located ~30 km to the northwest and northeast of the Kathmandu valley, respec-
tively. In contrast, the Mw7.2 aftershock is more compact both in time and space, as revealed by joint inversion
of teleseismic body waves and InSAR data. The different rupture features between the mainshock and the
aftershock could be related to difference in fault zone structure. The mainshock and aftershock ground motions
in the Kathmandu valley, recorded by both strong motion and high-rate GPS stations, exhibited strong ampli-
fication around 0.2 Hz. A simplified 3D basin model, calibrated by an Mw5.2 aftershock, can match the observed
waveforms reasonably well at 0.3 Hz and lower frequency. The 3D simulations indicate that the basin structure
trapped the wavefield and produced an extensive ground vibration. Our study suggests that the combination of
rupture characteristics and propagational complexity are required to understand the ground shaking produced
by hazardous earthquakes such as the Gorkha event.

1. Introduction

The Mw7.8 Gorkha earthquake (25 April 2015) and its Mw7.2
aftershock (12 May 2015) are the largest events to have occurred on the
Main Himalayan Thrust (MHT) since the great 1934 Mw8.2 Bihar-Nepal
earthquake (Fig. 1) (Sapkota et al., 2013). This earthquake sequence
unzipped the lower edge of the locked portion of the MHT (Avouac
et al., 2015), along which India underthrusts the Himalayas and
Southern Tibet at a rate of ~18 mm/yr (Lave and Avouac, 2000).
Geologic investigations combined with geophysical experiments reveal
a complex plate interface geometry where deformation is accom-
modated along a laterally varying sequence of ramps whose relation
with a series of destructive earthquakes is poorly understood (Bettinelli

et al., 2006; Bollinger et al., 2004; Cattin and Avouac, 2000).
The 1934 Mw8.2 earthquake ruptured a relatively flat portion of the

MHT just east of the Kathmandu Valley (Sapkota et al., 2013) and
produced severe damage and many casualties in Kathmandu (Sapkota
et al., 2016). The 2015 earthquake occurred at the western edge of the
1934 rupture area, immediately beneath the Kathmandu Valley (Fig. 1).
While nearly 9000 lives were lost throughout Nepal during the 2015
earthquake, surprisingly little damage and loss of life occurred in
Kathmandu, especially in light of the previous experience in 1934. The
relatively low damage levels in Kathmandu suggest that the ground
motions were weaker than expected for an Mw7.8 earthquake at this
distance (Galetzka et al., 2015), although the estimated intensities show
some variations (Martin et al., 2015; McGowan et al., 2017). In order to
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explain these observations, we need a better understanding of the
rupture properties of the 2015 earthquake sequence as well as the
geologic structure beneath Kathmandu. In this paper, we focus on de-
riving the kinematic rupture models for the mainshock and the Mw7.2
aftershock. The 3D deterministic synthetics obtained in this study are
combined with stochastic synthetics through a hybrid approach to si-
mulate the broadband ground shaking in Kathmandu both for the
mainshock and the Mw7.2 aftershock, which are summarized in a
companion paper (Chen and Wei, 2017, submitted together).

So far, a number of papers have been published on the source
properties of the earthquake using seismological and geodetic data,
either individually or jointly. Among these studies, Wang and Fialko
(2015), Elliott et al. (2016) and Feng et al. (2015) used ALOS2 InSAR
images and static GPS data to study the slip distribution of the main-
shock and the Mw7.2 aftershock; and (Avouac et al., 2015), Grandin
et al. (2015), Galetzka et al. (2015), Yagi and Okuwaki (2015), Liu et al.
(2016), Lay et al. (2017), Yue et al. (2017) and Hayes et al. (2015),
derived kinematic rupture models of the mainshock using high-rate GPS
waveform, strong motion data and/or teleseismic body waves. Most of
these kinematic inversions also include geodetic data (e.g. ALOS2
InSAR data), which provide additional constraints on the spatial dis-
tribution of the static slip because of the high quality and comprehen-
sive spatial coverage of the data. To constrain the temporal evolution of
the rupture (i.e. rupture speed and rise time), all these studies used
either high-rate GPS, strong motion data at local distance or P and SH

waves at teleseismic distance, but none use all data sets except Grandin
et al. (2015). Additionally, the waveform inversion in Liu et al. (2016)
and Grandin et al. (2015) were conducted at relatively long period, i.e.
10s and longer period for local waveform data and 8 s and longer
period for teleseismic body waves, and use displacement data in the
inversion process.

Galetzka et al. (2015) inverted for the rise time of the mainshock
using local high-rate GPS and strong motion data and concluded that
the average rise time is around 6 s with the time to the peak slip rate of
1.7 s, suggesting an asymmetric slip-rate function characterized by a
fast onset followed by a relatively long tail. But because the strong
motion and high-rate GPS stations are very sparsely distributed in the
source region, the resolution of the temporal evolution of the earth-
quake is mainly controlled by the portion of the rupture closest to the
stations. To extend these analyses, we resolve the rupture process of the
earthquake by jointly inverting local and teleseismic waveform data to
higher frequency than the above efforts. We also include the geodetic
data (static GPS, SAR and InSAR offsets) in our inversion, which pro-
vides a strong constraint on the static slip distribution and thus can
minimize the trade-offs between static slip and other source para-
meters.

As pointed out by some previous studies (Ji et al., 2002; Wei et al.,
2013), there can be a strong trade-off between rupture speed and rise
time when inverting for rupture properties. Nonetheless, the back-
projection of teleseismic high-frequency P-waves indicates that rupture

Fig. 1. Overview of the 2015 Nepal earthquake sequence. The GPS and strong motion stations are shown as green triangles with zoom-in of Kathmandu region shown in the upper left.
The circles are the seismicity in the first three months. The slip model of the 2015 M7.8 mainshock is color-coded and the blue contours indicate the slip model of the Mw7.2 aftershock.
The Main Himalayan Thrust is shown as the red line, with other thrust faults indicated as MBT =Main Boundary Thrust and MCT =Main Central Thrust. The epicenters of the 1833
Mw7.8 and the 1934 Mw8.2 earthquakes are plotted as white and black stars respectively, and the epicenter of the 2015 event is shown by the red star. Surface rupture of the 1934 event
is shown as black heavy lines. The focal mechanism beach ball indicates the location of the Mw5.2 aftershock, which was used to established path calibration. The moment-rate function is
shown in the upper-right inset with red and blue lines indicate the contribution from the first and the second asperities that are separated by the dash line the map view. A regional map
with large seismic events is plotted in the lower-left.
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speed of the mainshock ranges from 2.8–3.3 km/s (Avouac et al., 2015;
Fan and Shearer, 2015; Grandin et al., 2015; Lay et al., 2017; Yagi and
Okuwaki, 2015). The consistency between different studies and the
narrow range of the rupture speed suggest a smooth rupture process.
The back-projection constraints on the rupture speed, together with the
geodetic data, provide a unique opportunity for us to resolve the spatial
and temporal rupture features in greater detail than is usually possible
for most megathrust earthquakes.

Using our refined source model of the mainshock, as well as after-
shock data, we also address the ground shaking in and around
Kathmandu Valley with the goal of better understanding which features
are related to source and path effects. Galetzka et al. (2015) has shown
that the ground shaking within the Valley has a dominant frequency
around 0.2 Hz (5 s), presumably due to the basin structure producing
strong amplification and resonance at this frequency. The ground
shaking of some aftershocks, e.g. the Mw7.2 aftershock, also shows
similar features, with an even longer duration of strong shaking. Cur-
rently, a detailed 3D velocity model of the Kathmandu Valley region is
not available, although Paudyal et al. (2013) has reported the thickness
of soft sediment in the Kathmandu Basin using microtremor observa-
tions. Using these data, we construct a simple model of the 3D basin
structure in order to test the impact of the rupture and localized basin
response on the (< 0.3 Hz) ground motion within the Kathmandu
basin.

In the sections that follow, we will first show the finite fault in-
version of the mainshock and the Mw7.2 aftershock, with emphasis on
the joint usage of geodetic and seismic data to resolve the rupture de-
tails. We then use the derived rupture models along with a simplified
3D velocity model for the Kathmandu Valley to simulate the low fre-
quency (< 0.3 Hz) ground shaking with a 3D finite-difference algo-
rithm.

2. Datasets and processing

To conduct the joint inversion for the finite fault of the mainshock,
we collect waveform data at both local distances, including the strong
motion waveform data and high-rate GPS data, and teleseismic dis-
tances (P and SH body waves), as well as the static GPS offsets, InSAR
and SAR data.

We downloaded GSN broadband data from the IRIS DMC and se-
lected 40 teleseismic P and 37 SH waveforms to include in our analysis
based upon data quality and azimuthal distribution. Waveforms are first
converted to velocity by removing the instrument response at the fre-
quency range lower than 1 Hz. We also downloaded the strong motion
data from the Center for Engineering Strong Motion Data (www.
strongmotioncenter.org). The original data is integrated once to velo-
city and filtered at 2 s and longer period. The high-rate GPS data
(Galetzka et al., 2015) is differentiated once to velocity and also filtered
to the same frequency band as the strong motion data.

In the joint inversion, we also used two SAR/InSAR data pairs (as-
cending path P157 and descending path P48) from Advanced Land
Observing Satellite 2 (ALOS-2) and two pairs (descending Path 19 and
ascending Path 85) of Sentinel-1A Synthetic Aperture Radar (SAR)

images. The original data were downsampled to 263 and 715 points in
azimuth and range from the descending track P19, and 499 and 786
data points from the ascending track P85, in azimuth and range, re-
spectively. For ALOS-2 P157 azimuthal and P48 range offsets, we
downsampled to 288 and 1982 data points, respectively. Here we used
more data points for P48 because it covers a much larger area of the
deformation field and also because the data quality is better than for the
other images. These SAR/InSAR data provide key constraints on the slip
distribution of the earthquake, as discussed later. More geodetic data
processing details can be found in the appendix.

3. Methodology

We approximate the fault geometry with a planar fault segment
having a strike of 293° and dip of 7° (GCMT), and a total length and
width of 184 km and 120 km, respectively. This fault is discretized into
8 × 8 km2 subfaults. The crustal structure in this region is approxi-
mated by a 1D model (Table 1), which has been used in locating local
events and tested against more complex structures (Mahesh et al.,
2013). This 1D model was used to generate the Green's functions for
local and teleseismic distances. The distributed fault model assumes
that the rupture consists of a propagating rupture front with slip ac-
cruing in the wake of the passage of the rupture front. The slip history
at each grid point (j,k) on the fault is represented by the slip-rate
function [S ṫ ( )jk ] which specifies how a point on the fault slips in time.
This function is parameterized with a certain shape and duration of slip,
the so-called rise-time. In our inversions, we consider both a symmetric
cosine slip-rate function and an asymmetric Kostrov-shape function. For
each subfault, we solve for the slip amplitude, rake, rise time and the
averaged rupture velocity (rupture time).

The determination of a finite fault rupture model is an under-
determined problem due to the large number of unknowns and nu-
merous trade-offs among model parameters, such as rise time and
rupture velocity. In the present case the trade-offs between asperity
location and rupture speed can be significantly reduced if coseismic
geodetic observations are available and inverted jointly with the seis-
mological data. This is because the geodetic data are primarily sensitive
to the location of large slip patches, whereas the seismological data are
also sensitive to the temporal aspects of the rupture. Even so, the de-
termination of a finite fault source remains generally underdetermined
if the fault discretization is too fine. One way to regularize the inversion
is by setting some constraints on the roughness of the slip distribution,
which is the approach adopted here. We have tested the subfault sizes
of 10 km ∗ 10 km and 8 km ∗ 8 km, and we find that the latter is more
suitable as such subfault size shows more details of the rupture while it
does not over-fit the data.

We define the best-fit model as having the lowest objective function
similar as in (Ji et al., 2002), given as:

= + ∗ + ∗ + ∗Misfit Ewf WI EI WS S Ww M,

where Ewf is the waveform misfit defined in wavelet domain (Ji et al.,
2002), EI is the geodetic misfit, S is a normalized, second derivative of
slip between adjacent patches (a so-called Laplacian smoothing), M is a
normalized seismic moment, and WI, WS and Ww are the relative
weights applied to the geodetic misfit, smoothing, and moment, re-
spectively (Ji et al., 2002). The least squares misfits are calculated for
the teleseismic and geodetic data. We tested different values of WI, and
found that by varying the weight between 2 and 0.5 did not sig-
nificantly degrade the fits to the teleseismic or geodetic data for either
the individual or joint inversions, as shown in the Supplement Fig. S1.
Thus we weighted the geodetic and the seismic data equally, which is
realized by normalizing the misfit of each data set by the minimum
misfit obtained by inverting the individual dataset. Within the wave-
form data, we weighted each local station five times larger than that for
the teleseismic body waveforms. The static Green's Functions at the free
surface are calculated by using the same 1D velocity model (Table 1) as

Table 1
1-D velocity model in the source region.

Thickness (km) Vs (km/s) Vp (km/s) Density (g/cm^3)

4.00 3.20 5.50 2.53
12.00 3.40 5.85 2.64
4.00 3.50 6.00 2.69
6.50 3.70 6.45 2.83
10.00 3.85 6.65 2.90
5.00 4.15 7.20 3.07
14.00 4.20 7.50 3.17
– 4.30 7.90 3.30
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used in the teleseismic body-wave calculation.
We use a simulated annealing algorithm to find the best fitting

model parameters for the joint inversions (Ji et al., 2002). This non-
linear, iterative inversion algorithm is designed to avoid local minima
by searching broadly through parameter space in initial steps, and then
in later iterations to focus on regions that fit the data well.

During the inversion we allow the rake to vary from 90° to 130°, and
the slip amplitude is capped at 10 m. We selected the range for the
rupture speed to be 2.5–3.5 km/s, which agrees with the back-projec-
tion results (Avouac et al., 2015; Fan and Shearer, 2015; Yagi and
Okuwaki, 2015). We adopt the USGS epicenter location (http://
earthquake.usgs.gov/earthquakes/map/) in the inversion, but we
place the hypocenter at 12 km instead of 15 km as used in other studies.
This is because a shallower fault plane is needed to better fit the InSAR
and SAR data, as well as being more consistent with the depth of
aftershocks and geologic structure (e.g. Hubbard et al., 2016; Wang
et al., 2017) (also discussed further below).

4. Mainshock results

The joint inversion result using the cosine source time function is
presented in Figs. 1 and 2. Here, the range of rise times allowed was
bracketed by 1 s to 11 s with most values determined to be near 4 s. Our
model shows that the earthquake ruptured unilaterally towards the
east-southeast (Fig. 2b). The beginning of the rupture (5–18 s) has
about 40% longer rise times than the rest of the rupture (Fig. 2a).

After the first 15 s, when the rupture front is ~40 km to the east of
the epicenter, the earthquake ruptured the first major asperity, located
between high-rate GPS stations CHLM and KKN4 (Figs. 1, 2a,b). This
part of the rupture made the major contribution to the strong motion
stations close to the asperity (Fig. S1, e.g. KKN4 and CHLM). As the
rupture continued, the second major asperity broke, located about
30 km to the east of KKN4. These two major asperities correspond to the
two peaks in the moment-rate function (Fig. 1, inset), centered at ~24 s
and ~36 s, respectively. These two asperities are corresponding to the
two peaks in most of the strong motion/high-rate GPS data (Fig. S2).
The distance away from the rupture and the rupture directivity effect
controls the varying amplitude ratios of these two peaks. The rupture
also propagated about 30 km to the north of the second asperity, as well
as towards the east along a narrower strip (~20 km) extending about
40 km from the eastern end of the second major asperity. The north-
ward and eastward rupture form an abrupt corner of slip gap, in which
many of the aftershocks took place. The rise times for the rupture after
18 s are quite consistent, which show an average duration of ~6 s for
the cosine-shape source time function. The total duration of the
earthquake is about 60 s and the along strike rupture dimension is
about 140 km. The along dip dimension varies along the strike; the
widths of two major asperities are about 30 km each.

The fit to the static GPS offsets, P157 (ALOS-2) azimuthal offsets
and P48 (ALOS-2) range offsets are displayed in Fig. 3. More fits to the

Sentinal-1 data can be found in Fig. S3. Similar to previous studies, the
agreement between data and synthetics is quite good. Although slip
distribution characteristics are quite similar to those found earlier
(Fig. 1, map view), they have sharper features and are closer to the
surface, due to the constraint from the additional geodetic data. We find
that a shallower fault plane with hypocenter depth of 12 km provides a
much better fit to the geodetic observations, also in agreement with
refined aftershock seismicity and geology profiles (e.g. Hubbard et al.,
2016; Wang et al., 2017). This is particularly true for the azimuthal
offset data as shown in Fig. 3. For comparison, setting the fault deeper
such that the hypocenter is located at 15 km as in the early USGS report
does not fit these data as well (Fig. 3c). The USGS hypocenter was re-
fined to 9 km a couple months after the earthquake, which is shallower
than our preferred value.

The teleseismic and local velocity waveform fits are shown in Figs. 4
and 5. Overall we have very good fits for the strong motion and high-
rate GPS waveforms except the horizontal components of KATNP and
nast stations. These stations are located within the Kathmandu basin
and we will address this issue in the following sections. Also note the
very strong directivity effect as shown in both the teleseismic waveform
data and the synthetics. This can be observed in the SH-waveform data
by comparing the two boxes in Fig. 4. Since the event is propagating
towards the east, we would expect stronger amplitudes and shorter
duration motions for sites located to the east of the rupture (lower box),
compared to sites located in the opposite direction (upper box). Such
features are not observed for the more concentrated Mw7.2 aftershock
addressed later. In our inversion, we used velocity records for the tel-
eseismic waveforms instead of displacement in order to emphasize the
higher frequency content in the recorded motions. Integrating these
waveforms, we find the simulated teleseismic displacements provide an
excellent fit to the observed teleseismic displacements, as expected and
shown in Fig. S4. The displacement data again agree with eastward
focusing.

To demonstrate the contribution of teleseismic waveforms in con-
straining the finite fault inversion, we predict these motions using a
rupture model derived from the joint inversion of the geodetic and local
waveform data alone (Fig. S5). We find the prediction generates poor
fits to both the amplitude and timing of major teleseismic phases
compared with those derived from the full inversion. For example, at
stations located around an azimuth of 310° the first 15 s shows much
larger amplitude than is observed. Additionally, the peak amplitude
motions of the simulation arrive earlier at stations towards the north,
but later towards the southeast. This test indicates that the teleseismic
waveforms need to be included in the inversion to better constrain the
temporal evolution of the rupture. This is particularly true for a case
like Nepal where local stations are sparsely distributed in the source
region.

We also test the sensitivity to the shape of source time function in
the inversion by comparing the results from the cosine-shape and
Kostrov-shape source time function parameterizations in Fig. 6. We

(a) (b)

cosine source time function

A1A2 A1A2

Fig. 2. (a) The smoothed rise time profiles for cosine source time function inversion. (b) Depth profile of slip distribution for inversion in (a), the contour lines indicate the rupture time.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

S. Wei et al. Tectonophysics 722 (2018) 447–461

450

http://earthquake.usgs.gov/earthquakes/map
http://earthquake.usgs.gov/earthquakes/map


found that both source time functions produce almost identical fits for
both local and teleseismic waveforms (Fig. 6b-d). This suggests that for
this particular dataset with limited near source observations and for the
target bandwidth of our inversion (T > 2 s), a cosine source time
function is approximately equivalent to a Kostrov source time function
with appropriate scaling since the latter function has a long tail. This
may also explain the observation that inversions with a different source
time function can fit the data almost equally well at relatively long
period (i.e. > 5 s). However, compared with multiple-triangle source
time functions inversions, our inversion scheme (single source time
function) requires a much smaller number of parameters given the same
subfault number. Cohee and Beroza (1994) also compared these two
methods of waveform inversion and found that the single-time-function
technique does a better job of recovering the true seismic moment and
the average rupture velocity when tested against synthetic data.

An interesting feature in the rise time distribution is that the be-
ginning of the fault rupture displayed larger values than the latter
portion. However, such results can be affected by rupture velocity
variations, as explored further in Fig. 7 assuming the Kostrov source
time function. To test the potential trade-off between rise time and
rupture speed, we setup the inversions at various rupture speed ranges,
where the minimum rupture speed is set to 2.8 km/s (Fig. 7a), 2.5 km/s
(Fig. 7b) and 2.2 km/s (Fig. 7c). However, we find that longer rise time
cannot fully compensate the effect due to the increase of minimum
rupture speed when the minimum speed is 2.8 km/s. For example, the
horizontal component fits at station KKN4 in Fig. 7a are clearly worse
than those in Fig. 7b and c. On the other hand, the difference in wa-
veform fits becomes negligible when the minimum rupture speed de-
creases from 2.5 km/s to 2.2 km/s (Fig. 7b and c), while still resolving
the longer rise time for the beginning portion of the rupture, although

slight tradeoffs between rise time and rupture speed can still be ob-
served. This implies that the upper bound of the minimum rupture
speed should be around 2.2–2.5 km/s, which is lower than the averaged
rupture speed of the earthquake (~3.0 km/s) as also shown in the back
projection results. In short, the relative slow rupture speed and/or
longer rise time for the beginning of the rupture is constrained by the
high quality geodetic data and the weak onset at the local strong motion
data.

5. Aftershock modeling

5.1. Mw7.2 aftershock

The Mw7.2 aftershock is located to the north of the eastern end of
the mainshock along with many other aftershocks, as indicated in
Fig. 1. Several focal mechanisms have been reported (e.g. gCMT and
USGS W-phase) for this event with similar strikes near 300° but with
some variation in dip and depth. Here we used the best point source
mechanism we derived from long period teleseismic P and SH wave
inversion, which has a strike of 312°, a dip of 11°, and an epicentral
depth of 12 km, with a Mw of 7.2. This source mechanism was used as
the basis for the finite fault inversion. Here we adopted 36 P-waves and
33 SH-waves at teleseismic distance, as well as one ALOS2 descending
image to conduct a joint inversion, with corresponding geodetic and
waveform fits shown in Figs. 8 and 9, respectively. The overall excellent
fits to both the waveform and static data indicate that the depth and slip
distribution of the earthquake were well constrained.

Generally, small error of hypocenter depth is not that essential in
finite fault modeling because the major slip offsets can move up or
down to match the timing of depth phases (e.g. sP, sS). However, in the
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Fig. 3. Geodetic fits for the mainshock. Panel (a) shows the fits for azimuthal offset of ALOS-2 track P157 and (b) displays the fits and the range offset of ALOS-2 track P48. For
comparison, the misfit for P157 azimuthal offsets for hypocenter depth of 15 km is given in (c) which shows distinct larger misfit. The vertical and horizontal static GPS fits are indicated
in (d) with red (horizontal) and blue (vertical) indicates the synthetics and the gray indicates the observation. The slip model in Fig. 1 is shown as contours and the epicenter is displays as
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case of a low angle fault plane solution, as in this situation, the depth of
hypocenter controls the interference between S and sS, etc. If we place
the earthquake hypocenter at a depth of 17, the fit to the teleseismic
waveforms is clearly worse than that at 12 km, in particular for the SH
waves where the synthetic depth phases are later than in the data (Fig.
S6). The value of 12 km can be considered as the largest depth for this
earthquake since we are using a 1D velocity model without sedimentary
layer, which is probably a good assumption for this region except for
the Kathmandu region (Table 1). Using a slower velocity model will
move the earthquake to an even shallower depth to fit the teleseismic
P/SH waves and their depth phases. A depth of 12 km places the fault
plane of the Mw7.2 aftershock about 5 km above the MHT, which im-
plies that it ruptured a secondary fault shallower than the main plate
boundary (Wang et al., 2017), although many other studies placed the
Mw7.2 aftershock on the MHT (e.g. Baillard et al., 2017; Elliott et al.,
2016).

The slip distribution of the earthquake is located to the north of the
eastern end of the mainshock rupture (shown as blue contours in
Fig. 1). Although the map view of their slip distributions seems com-
plementary to each other in the north-south direction, there is a clear
east-west oriented gap between them (Fig. 1). Also, note that most of
the aftershocks occurred in the region surrounding the Mw7.2 after-
shock, including the Mw6.7 aftershock that took place one day after the
mainshock. The Mw7.2 aftershock also generated fairly strong shaking
in Kathmandu, which will be discussed in the following section.

5.2. Calibration event (Mw5.2)

Although the rupture process of the Mw7.2 aftershock is relatively

simple, its source duration (Fig. 8) is still much longer than the period
ranges in which we are interested (e.g. 4–5 s, the dominant frequency of
basin vibration in Kathmandu). Thus, we conducted a search for a
smaller event, which can be considered as a point source at the period
longer than about 3 s. This proves useful in testing the performance of
our Kathmandu basin model, discussed in the next section. It appears
that the Mw5.2 event (latitude: 27.8297°, longitude: 85.8650°, origin
time: 2015 April 26, 16:26 UTC) serves this purpose. The location of the
Mw5.2 event is shown in Fig. 1.

There are several reasons we choose this specific aftershock: firstly,
the horizontal location of the earthquake is well constrained as different
catalogs show very similar locations (Fig. 1); secondly, the earthquake
produced good signal to noise ratio in observed long period teleseismic
motions, which can be used to precisely constrain the depth and focal
mechanism; and thirdly, the focal mechanism of the earthquake, both
from GCMT and our own inversion, shows a shallow dip angle thrust,
fairly consistent with that of the mainshock. Here we used the GCMT
solution and we revised the depth by modeling its teleseismic depth
phases, which reveals a preferred depth of 14.5 km as demonstrated in
Fig. 10. The modeling of the motions for this event within the Kath-
mandu basin is discussed in the next section.

6. 3D ground motion simulation for Kathmandu basin

The inversion result of the mainshock shows that the waveform fits
for the basin stations KATNP and NAST, Fig. 5, are not as good as for
the other local stations, as addressed in earlier studies. In particular, the
horizontal components of data have much larger amplitudes and longer
shaking duration (with duration defined as the time from the P-wave
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arrival to when the coda amplitude decays to 10% of the peak ground
velocity) compared with the synthetics. We suspect this is primarily
caused by the sedimentary structure in the Kathmandu Valley. The
waveform record for the Mw7.2 aftershock shows similar amplification
features and the apparent shaking duration is even longer than that of
the mainshock. The difference in the duration is possibly because the
peak shaking in Kathmandu for the mainshock is dominated by the S-
wave from the largest asperity that is closest to the valley while the
aftershock is located further from the valley and surface waves dom-
inate these records.

Although the basin structure appears to play an important role in
the shaking, there is no available 3D velocity model in this region that
includes this structure. However, Paudyal et al. (2013) have reported
the thickness of soft sediment in the Kathmandu basin using micro-
tremor observations, which provides key information that we use to
develop a simplified 3D velocity model of the basin. To construct a 3D
model in the region, we assume a 1D velocity model (Table 1) as
background and use the observations from Paudyal et al. (2013) to

roughly define a simplified basin model near Kathmandu (Fig. 11). The
maximum depth of the basin is about 900 m. Within the basin, we as-
sume a layered velocity structure with 300 m of Vs = 0.4 km/s material
for the top layer (See inset of Fig. 12 for our preferred model). Our
modeling utilized a staggered-grid finite-difference approach Paudyal
et al. (2013) with a grid spacing of 100 m.

Since the amplification of ground shaking in the basin can be sen-
sitive to the shear wave speed, we tested different Vs values, ranging
from 0.3 to 1.0 km/s with a 0.1 km/s interval, for the top layer in the
basin. We found that a value of 0.4 km/s can fit the waveform of the
Mw5.2 event best at 0.3 Hz and lower frequency. Although with these
parameters, the maximum resolved frequency is about 0.5 Hz, we found
that the observed waveforms become much more complicated above
0.3 Hz. This is clearly demonstrated in Fig. 12, where we compare the
0.3 Hz and 0.4 Hz waveforms for both synthetics and data. As seen in
this figure, the shape and amplitude of synthetics change very little for
different frequency bands, while it is not so for the data. This implies
the simple basin model we have constructed cannot adequately capture
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the complexity in the motions at frequencies higher than 0.3 Hz, thus
we will focus on 0.3 Hz and lower frequencies when we compare the
synthetics with the data for the mainshock and the Mw7.2 aftershock.

Also note that, even at 0.3 Hz, the synthetics cannot reproduce the
large amplitude in the data that arrived> 50 s after the P-wave, which
is likely caused by the coupling of surface waves and the basin struc-
ture. A more detailed 3D velocity model is likely required to model
these additional features and our current observations are too sparse to
provide sufficient constraint in this regard.

With our calibrated 3D velocity model for the Kathmandu valley
from the Mw5.2 event, we next perform simulations for the Mw7.2
aftershock and the mainshock using the finite-fault rupture models
derived in our inversions. As guided by the calibration modeling, we
restrict our comparison to frequencies of< 0.3 Hz. In this forward
waveform modeling, we also included waveform records of the main-
shock at additional four strong motion stations that were installed in
Kathmandu by the Japanese scientists (Takai et al., 2016). The 3D
synthetics and data comparisons are shown in Fig. 12, both for the
mainshock and the Mw7.2 aftershock. Here we focus on the stations in
the basin as the stations outside of the basin have very similar syn-
thetics to those calculated from the 1D model discussed earlier (e.g.
KKN4 in Fig. 12). As shown, the horizontal components are fit much
better by the 3D synthetics both in amplitude and phase except for KTP.
The horizontal 3D synthetic amplitudes at KTP are much larger than the
1D synthetics and data, as the station is located on the hard rock (Takai
et al., 2016). Better waveform fits for sedimentary sites can be ex-
plained by the slower velocity structure in the basin, which bends the

incident SV and SH ray path to an almost vertical direction, thus much
more S-wave energy appears on horizontal components. This is parti-
cularly true for the mainshock, as the waveform is dominated by the S
waves from the asperity very close to Kathmandu. In addition, with the
amplification effect due to softer material, the horizontal components
in the 3D synthetics have much larger amplitudes than in the 1D syn-
thetics. However, the vertical component shows almost the same am-
plitude as in the 1D synthetics and both fit the data very well.

This effect is more obvious for the mainshock, which could partly be
because the amplification effect cancels out the effect due to the
bending of S-waves as the projection of S-wave energy to the vertical
component becomes smaller in the softer material. When a ray shoots
almost vertically towards a station, the response of the structure is
simpler on the vertical component than the horizontal components
(e.g., receiver function effect mainly appears on horizontal compo-
nents) especially when the motions are dominated by direct S arrivals
as appears to be the case with the mainshock. On the other hand, we
can also see that the vertical component for the Mw5.2 event shows
more complexity than the mainshock and the Mw7.2 aftershock. Note
that the horizontal/vertical (H/V) amplitude ratio for the Mw5.2 event
is about three times larger than that for the mainshock, which is likely
due to differences in radiation pattern sampling of the two events, as
well as source finiteness effects.

The ground shaking animations of the mainshock and the Mw7.2
aftershock are shown in the supplement, in which the effects due to the
basin structure and rupture directivity can be clearly seen. We can also
see some interesting differences between the mainshock and the
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aftershock. The mainshock animation does not show a clear P-wave
towards Kathmandu, in agreement with the very smooth onset of the
observed waveform data, as well as the relatively slow and smooth
beginning to the rupture process as seen in our inversions. In addition,
the KATNP station is located towards the nodal direction of P-wave
radiation pattern at least for the beginning portion of the rupture.
Overall, the peak amplitude is dominated by the S-waves from the
largest asperity that is much closer to the stations. On the other hand,
the aftershock produces fairly strong P-wave amplitude towards
Kathmandu and the animation clearly indicates the amplification effect
in the basin.

The Peak-Ground-Velocity (PGV) maps (Fig. 13) of the two events
also show very different features. As expected, the mainshock PGV
shows a clear rupture directivity effect towards the ESE, while the
aftershock PGV indicates slight updip rupture directivity. As shown in
the animations and PGV maps, the shaking within Kathmandu Valley is
much larger than that just outside of the basin, both for the mainshock
and aftershock, which is due to the 3D velocity model that we used
surrounding Kathmandu. The largest simulated PGV in the Kathmandu
valley exceeds 100 cm/s, at relatively low frequency (< 0.5 Hz). The
largest simulated PGV for the aftershock is about 40% for that of the
mainshock. Due to the frequency content limit, we cannot directly

compare these simulated PGV values with the observed damage dis-
tribution since our 3D simulation does not have the high frequency
content (e.g. 1–10 Hz) that most of the buildings are sensitive to. In a
companion paper (Chen and Wei, 2017, summited to the same issue),
the deterministic synthetics derived in this study are used to construct
the broadband ground shaking synthetics, in which the relatively low
frequency (> 0.5 Hz) directivity effect has been taken into account.

7. Discussion and conclusion

The dense spatial coverage and high quality of the satellite geodetic
observations combined with the strong motion and teleseismic wave-
form records provide excellent resolution for the slip distribution and
rupture process of the 2015 Nepal earthquake. Most of the published
slip models, including ours, show very consistent slip distribution. The
high resolution of the rupture process allows us to identify several
distinct rupture stages of the mainshock, including the slow rupture
propagation and long rise time occurring in the first 18 s, followed by
the subsequent rupture of two large asperities located about ~40 km to
the northwest and northeast of Kathmandu. We also image a deeper
asperity that may overlap with the location of the 1833 rupture
(Graves, 1996). The mainshock rupture appears to have had little slip at
its northeastern end, where most of the aftershocks took place. These
features indicate that segmentation of fault geometry may play an im-
portant role in bounding the coseismic slip, although developing a
better understanding of this segmentation requires more detailed stu-
dies of the geological structure, velocity structure and seismicity. In
particular, Bollinger et al. (2016) found that the coseismic slip of the
mainshock matches well with the flat portion of the MHT beneath
Kathmandu, and argued that the ramps on the MHT behaved as barriers
during the rupture. However, whether the 1833 or 1934 events rup-
tured the same slip area as in 2015 event is still an open question.

Our inversion shows that we can explain the waveform data almost
equally well with both cosine and Kostrov slip-rate functions. The
average duration is about 6 s for the cosine source time function, which
is fairly consistent with that reported by Hubbard et al. (2016). Our
inversions indicate that the spatial distribution of rise time could be a
robust feature since both source time function distributions (Fig. 2)
show larger values (~40%) for the rupture at 5–18 s. It is interesting
that some back-projection results, e.g. Galetzka et al. (2015), also show
relatively slow rupture speed in this time window. As indicated by the
good fits to station KKN4 and vertical component of station KATNP and
NAST, the longer rise time and slow rupture speed likely leads to the
weak onset and asymmetric waveform pulse recorded at these stations.
The longer rise time and thus smoother rupture also suggests reduced
high frequency radiation. To resolve the shape of the source time
function (or slip-rate function) in greater detail we need to model the
waveforms at higher frequencies, which would require a denser station
coverage as well as a better understanding of the velocity structure.

Because the 2015 earthquake only ruptured the down-dip portion of
the MHT, not like the case for the 1934 Mw8.4 earthquake to the east
that ruptured all the way to the surface, there are still some concerns of
possible future rupture on the shallow part of the MHT (Avouac et al.,
2015). In addition, there is significant potential seismic hazard to the
west of the 2015 earthquake, where a devastating earthquake occurred
in 1505 with even longer rupture dimension than the 1934 earthquake
(Avouac et al., 2015). The 1505 earthquake region has not experienced
a large earthquake for> 500 years and it may be close to the end of its
seismic cycle given the convergent rate of ~3 cm/year and strong
coupling in the region (Bollinger et al., 2016). The slip deficit accu-
mulated in this region is> 10 m, which if released in a single event, is
larger than the peak slip of the 2015 earthquake (~7 m, see Fig. 1).
Also note that 500 years is very close to the recurrence time of
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megathrust events estimated by paleoseismology and elastic modeling
studies on this system, which range from 500 to 700 years (Ader et al.,
2012).

The 0.2–0.25 Hz resonances of ground shaking in the Kathmandu
Valley were likely a combined effect of both the source and the velocity
structure. The fact that the waveform records outside of the Valley on hard
rock sites show strong signals at about 0.2 Hz (e.g. station KKN4 in Fig. 5)
indicates the source spectrum is dominated by energy at this frequency.
The sedimentary structure within the Valley further amplifies the ground
shaking, also at the dominant frequency of 0.2 Hz, suggesting the re-
sonance frequency of the basin is around this frequency. The finite di-
mension of the Valley has contributed to the long duration of the ground
shaking as the seismic waves were trapped in the Valley (e.g. animation 1).
To model the ground shaking to higher frequency (e.g. to 10 Hz), which is
more meaningful for the building damage assessments, we need to con-
sider the strength and distribution of high frequency source radiation, as
well as the effects of site response. A detailed study on the hybrid
broadband ground shaking simulation of the mainshock and the Mw7.2
aftershock can be found in a companion paper (Chen and Wei, 2017),
which finds that the high frequency energy was mainly radiated from the
deeper portion of the rupture. This feature coupled with strong non-linear
site effects led to the reduced high frequency shaking experienced in the
Kathmandu Valley.

After conducting a series of finite fault inversions and ground
shaking simulations for the 2015 Nepal mainshock and the Mw7.2
aftershock, we have revealed the rupture and shaking properties of
these events in greater detail. Our inversions show that the coseismic
slip of the mainshock has several well-constrained asperities corre-
sponding to different stages of the rupture. In particular, the first 5–18 s
of the rupture has a 40% longer rise time and slower rupture speed
compared with the rest of the rupture. The 3D simulation of the strong
motion and high-rate GPS stations in Kathmandu Valley indicates that a
simplified 3D velocity model in Kathmandu can largely explain the
vibration and amplification effect at frequencies of< 0.3 Hz, with
surface layer Vs in the basin of about 400 m/s.
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Appendix A. Geodetic data processing

We processed Interferometric Synthetic Aperture Radar (InSAR)
data from the Japanese Aerospace Agency (JAXA) Advanced Land
Observing Satellite 2 (ALOS-2) using GMTSAR software (Chen and Wei,
2017, submitted together) and unwrapped the interferograms using
SNAPHU (Sandwell et al., 2011). We used data from ascending paths
156 and 157 and descending path 48. The descending data were ac-
quired in Wide Swath (ScanSAR) mode, enabling a swath width of
350 km, which provided complete coverage of the deformed area in a
single frame. ScanSAR interferometry requires precise burst alignment
between the two satellite acquisitions; ALOS-2 is the first L-band sa-
tellite to offer burst-aligned ScanSAR interferometry as a standard op-
erating mode (Chen and Zebker, 2000). We formed interferograms from
the Level 1.1 single-look-complex (SLC) images after first applying a
five-parameter alignment to account for geometric and orbital errors in
both range and azimuth, and ionospheric distortions which produce a
second-order shift in azimuth. We found that using six or more para-
meters to align the image resulted in a significant phase mismatch at
the sub-swath boundaries. We unwrapped each sub-swath in-
dependently using SNAPHU and then combined the sub-swaths into a
single 350 km-wide image by adding an integer multiple of 2π to ensure
continuous phase at the sub-swath boundaries. Some sub-swaths
showed a phase discontinuity across the Himalaya Mountains related to
an unwrapping error, we also resolved this by adding an integer mul-
tiple of 2π to eliminate unphysical discontinuities. The resulting

interferograms from all tracks contained a residual ramp, which may be
related to ionospheric distortions or orbital error; we removed a best-
fitting plane from the final image after masking out the deforming area.
The final interferogram products are available online at http://topex.
ucsd.edu/nepal.

In addition to ALOS2 data, we also used two pairs (descending Path
19 and ascending Path 85) of Sentinel-1A Synthetic Aperture Radar
(SAR) images from the European Space Agency to map the surface
deformation caused by the earthquake. We aligned the post-seismic
image (acquired on April 29th and May 3rd) along with the pre-seismic
image (acquired on April 17th and 9th) by using the GAMMA software
(Lindsey et al., 2015), and then calculated cross-correlation between
uniformly distributed non-overlapping 64-by-64 sub images on the co-
registered radar amplitude images. The peak location in the obtained
cross correlation surface indicates the offset between the two sub-
images in azimuth (satellite traveling direction) and in range (radar
line-of-sight direction, LOS). Offsets between the SAR image pair are
attributed to the ground displacement as well as to imaging geometry
differences and topography. We therefore calculated the geometric
offsets from the orbital information and the Shuttle Radar Topography
Mission Digital Elevation Model (SRTM DEM).

After the geometric correction, a low-frequency trend still exists in
the offsets field, probably due to inaccuracy of the orbital information.
We removed this component by fitting a polynomial surface to the
offsets located in the far field. We downsample the data to 263 and 715
points in azimuth and range from the descending track P19, and 499
and 786 data points from the ascending track P85, in azimuth and
range, respectively. The derived range offsets measure ground dis-
placement in the directions that are from 32 to 46° from the vertical
with a component towards the west and east, while the azimuth offsets
measure along-track components, which are in about SSW and NNW
11° for the descending and ascending data, respectively. The accuracy
of SAR image offsets depends on the cross-correlation peak and can
reach around 1/10–1/20 of the pixel spacing (Wegmuller et al., 1997).
For the Sentinel-1A image, the azimuth and range pixel spacing are
14 m and 2.3 m respectively, as a consequence, azimuth offsets are only
useful when the north-south component of the horizontal deformation
is large, which is the case for the Nepal earthquake. Range offsets
measure the surface deformation in the same direction as inter-
ferogrammetry, which can be formed from the same SAR image pair.
However the C-band phase information is seriously decorrelated in the
Himalayan mountainous areas. In addition, the high deformation gra-
dient surrounding the peak deforming area may result in aliasing phase
values. Both factors can cause un-reliable phase unwrapping results, we
therefore decide to use image offset data for our model inversion.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.tecto.2017.11.024.
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